ICP-MS 测定川滇黔相邻区高岭石黏土岩矿物中伴生关键 三稀元素的前处理方法研究

周万峰,王永鑫,张安丰

(1.贵州省战略矿产智慧勘查重点实验室,贵州 贵阳 550081;
2.贵州省地质矿产中心实验室,贵州 贵阳 550018;
3.自然资源部基岩区矿产资源勘查工程技术创新中心,贵州 贵阳 550081)

[摘 要]在川滇黔相邻区峨眉山玄武岩顶部与宣威组底部之间发育一套厚度较为稳定的风化 壳,主要为高岭石黏土岩,富集有三稀元素。为弄清其品位及含量,本文采用 XRD 衍射分析、 XRF 分析主次量元素,选用几种熔矿前处理进行对比,试液用电感耦合等离子质谱(ICP-MS)测 定。实验结果表明:①试样矿物组成主要为高岭石、锐钛矿、伊利石、钛铁矿、板钛矿等,其中高 岭石占比 62.3%~89.85%,锐钛矿占比 2.50%~11.8%,伊利石占比 1.8%~18.0%,钛铁矿占 比 0.10%~1.00%,板钛矿占比 0.70%~7.00%,其主量元素主要为 Si、Al、Fe、Ti。②微波消解 法较适用于 Sc 的消解处理,但对于 Nb 和 Zr 元素,数据偏低,其余差异性不显著。③碱熔-沉淀 分离法较适用于难溶矿物分解,不仅打开矿物晶格,且在沉淀剂或络合剂的作用下,实现纯化试 液目的,有效降低基体干扰,提高数据准确性,较适用于 Pr、Nd、Tb、Dy、Nb、Zr 元素的方法前处 理;④碱熔-熔融物酸化法适用于 Ga 的熔矿前处理,在 KED 模式下,有效降低背景干扰,提高了 准确性。体系方法检出限介于 0.011~1.66 µg/g 之间,测定下限介于 0.044~6.65 µg/g 之 间,RSD 介于 2.06%~11.1%之间,RE 介于 0.99%~9.90%之间。经实际样品验证,方法较适用 于该地区试样中关键三稀元素的测定。

3[关键词]三稀元素;碱熔法;微波消解法;电感耦合等离子体质谱法(ICP-MS) [中图分类号]P588.22;O657.63;O652.4;O614.33;O614.37 [文献标识码]A [文章编号]1000-5943(2024)01-101-08

贵州作为矿产资源大省,产出煤、磷、铝、锰、 重晶石等优势矿产,在全国占有重要地位。然而, 在三稀矿产方面,其优势明显不足(郑禄林等, 2022)。在新一轮找矿突破战略行动中,发现川滇 黔相邻区玄武岩风化壳中富含三稀元素(马岩, 2023),但其赋存状态较为复杂(张海等,2022;张 生辉等,2022),为弄清其品位,建立该地区三稀元 素的分析检测方法对国家能源安全与经济社会发 展具有重要意义。

目前,岩矿样品的检测分析方法,主要在于前 处理,现有敞开酸溶(门倩妮等,2020)、密闭酸溶 (程祎等,2020;胡兰基等,2022)、微波消解(张祎玮 等,2021)、碱熔(吴刚,2019;杨惠玲等,2022)等方 法。常见岩矿样品采用常规酸溶均能溶解完全,而 难熔性样品,碱熔具有明显优势(孙梦荷等,2023)。 报道称,采用混酸敞开酸溶即能将离子型稀土矿消

[[]收稿日期]2023-11-27 [修回日期]2024-01-04

[[]基金项目]毕节试验区威宁县麻乍"三稀"矿产普查(黔自然资源函[2021]1360号)。

[[]作者简介]周万峰(1973—),男,高级工程师,主要从事岩石矿物分析及技术管理等工作。793872711@qq.com。

[[]通讯作者]王永鑫(1978—),男,高级工程师,主要从事岩石矿物分析及技术管理等工作,674990383@qq.com。

解彻底(施意华等,2022)。对于特殊矿物,采用硫酸等四酸进行密闭酸溶,也能解决稀土矿样品的熔矿难题(刘淑君,2023),但该法耗时长,不利于批量检测需求。刘闫等(2022)采用几种常规酸溶法进行对比,发现未能将金绿宝石消解彻底,而碱熔法不仅熔矿完全,且测定结果快速准确。

在仪器测试方面,主要有分光光度法(杜芳 艳,2007),原子吸收光谱法等(毛善成,2003)。 此类方法存在步骤多、耗时长,效率低等特点。而 ICP-MS 法具有分析速度快、灵敏度高、精密度好、 测定范围广等优点,在痕量检测方面具有独特的 优越性(刘环等,2019)。本文从矿物组成和主量 元素分布,对前处理溶矿方法进行对比,选取 Pr、 Nd、Tb、Dy、Sc、Nb、Zr、Ga 进行论证,筛选出较为 快速、准确、高效的检测分析方法,为贵州三稀矿 产资源储量的统计及后期对该类矿产的高效开发 利用提供基础技术支持。

1 实验部分

1.1 主要仪器

iCAP RQ 电感耦合等离子体质谱仪(美国 Thermo 公司);REVO 微波消解仪(北京莱伯泰科 股份有限公司);ZSX Primus II X 波长射散型荧光 光谱仪(日本理学株式会社);Agilent 5110 电感耦 合等离子体发射光谱仪(美国 Agilent 公司)。

1.2 主要试剂及材料

氢氧化钠(上海润捷化学试剂有限公司)、过 氧化钠(天津市大大沽化工股份有限公司)、硫酸 镁(天津市科密欧化学试剂有限公司)、氯化铵和 乙醇(国药集团化学试剂有限公司)、盐酸(重庆 川东化、硝酸和氢氟酸(HF)(重庆川东化工(集 团)有限公司)、高氯酸(成都市科隆化学品有限 公司)、三乙醇胺天津市科密欧化学试剂有限公 司),二次去离子水:电阻率>18 MΩ·cm。

稀土标准溶液:100 μg/mL(国家有色金属及 电子材料分析测试中心);

钪标准溶液:1 000 μg/mL(坛墨质检科技股份有限公司);

稀有元素标准溶液:100 μg/mL(国家有色金 属及电子材料分析测试中心); 稀散元素镓标准溶液:100 μg/mL(坛墨质检 科技股份有限公司);

铑和铼标准溶液:100 μg/mL(国家有色金属 及电子材料分析测试中心);

标准物质: GBW07405 (GSS-5)、GBW07386 (GSS-30)、GBW07105 (GSR-3)、GBW07727 (GSR-18)、GBW07155、GBW07185、GBW07156、 GBW07157、GBW07178 (地球物理地球化学勘查 研究所); GBW07159、GBW07160、GBW07161 (地 质矿产部沈阳综合岩矿测试中心)。

1.3 前处理试验方法

1.3.1 微波消解法

称取 0.1 g 试样(精确至 0.000 1 g), 于微波 消解仪中, 加入 3.0 mL 氢氟酸、1.0 mL 硝酸, 加 盖密封, 浸泡 1 h。按如下程序运行: 功率 1 800 W, 从室温升至 120 ℃, 时间 5 min, 保持 10 min; 再升温至 180 ℃, 时间 5 min, 保持 10 min; 最后升 温至 185 ℃, 时间 5 min, 保持 60 min。待冷却至 40 ℃, 打开取出, 转移至加热板加热, 加入 3.0 mL 氢氟酸、1.5 mL 硝酸和 3.0 mL 高氯酸, 于 200 ℃ 加热至近干, 用 40% 王水提取, 冷却后, 2% 硝酸定 容至 200 mL, 摇匀备测, 随同做 2 份空白试验。 1.3.2 碱熔-沉淀分离法

准确称取 0.1 g 试样(精确至 0.000 1 g)于刚 玉坩埚中,加入约 2.0 g 过氧化钠,搅拌混匀,于表 面再铺加约 0.5 g,置于已升温至 750 ℃的马弗炉 中,熔融 15 min,取出稍冷却,放入预盛有 50 mL 热的浸提液(见下文注释)进行浸取,洗出坩埚, 静置,用慢速滤纸过滤,1%氢氧化钠溶液洗涤沉 淀 2-3 次,弃去滤液,沉淀用 40mL 热的 50%硝酸 分次溶解,再水洗 2-3 次,用水稀释至 200 mL 容 量瓶,摇匀,上机待测,随同做 2 份空白试验。

(注:方案一,浸提液为5%三乙醇胺溶液;方 案二,为0.5%硫酸镁和氯化铵溶液)

1.3.3 碱熔-熔融物酸化法

准确称取 0.1 g 试样(精确至 0.000 1 g)于银 坩埚中,加入约 2.0 g 氢氧化钠,搅拌混匀,于表面 再铺加 0.5 g,置于已升温至 720 ℃马弗炉中,熔 融约 15 min,取出稍冷却,放入预盛有 40 mL 热水 进行浸取,洗出坩埚,用 50%盐酸溶液进行酸化, 吸取 10 mL 定容至 50 mL 容量瓶,摇匀,上机待 测,随同做 2 份空白试验。

1.4 上机测试方法

仪器点火后,进行调谐优化。配制标准溶液, 用 2%硝酸将标准溶液逐级稀释成 0.00 μg/L、0.10 μg/L、0.50 μg/L、1.00 μg/L、5.00 μg/L、 10.0 μg/L、50.0 μg/L、100 μg/L、500 μg/L、 1 000 μg/L的标准溶液系列。2%硝酸将内标溶液 稀释成含量为 10 μg/L。启用 KED 模式,仪器工作 参数如下:射频功率 1 550 W;载气为氩气,流量 1.05 L/min;辅助气流量 0.90 L/min;氦气流量 5.0 mL/min;雾化室温度 2.70℃;蠕动泵转速 40 rpm;高灵敏度同心雾化器;采样锥/截取锥均为 镍锥,采样锥直径 1.1 mm,截取锥直径0.5 mm;采 样模式为跳峰;采样深度为 5.0 mm;重复次数 3 次。

2 结果与讨论

2.1 矿物组成及主量元素分析

试样经 XRD 分析,见图 1 所示。主要为高岭

石、伊利石、锐钛矿、板钛矿、钛磁铁矿、红柱石、赤铁矿、钙钛矿等矿物。其中高岭石占比 62.3%~ 89.8%,锐钛矿占比 2.50%~11.8%,伊利石占比 1.8%~18.0%,板钛矿占比 0.70%~7.00%,赤铁 矿占比 0.20%~4.40%,钙钛矿占比 0.10%~ 4.80%,红柱石占比 0.90%~2.00%,钛磁铁矿占 比 0.10%~0.80%。矿石中存在纳米级稀土独立 矿物,稀土主要以离子相和胶态相赋存,其次为矿 物相和类质同象等赋存状态,含铌的独立矿物十 分稀少,主要赋存于铌铁矿中,同时在矿区中发现 高岭石和叶腊石富集有 Ga(郑禄林等,2022)。

经 XRF 分析, 主量元素见表 1 所示, SiO₂ 为 19.0% ~ 53.6%, 平均值为 43.9%, Al₂O₃ 为 22.5% ~ 37.6%, 平均值为 33.6%, Fe₂O₃ 为 3.78% ~ 54.8%, 平均值为 15.6%, TiO₂ 为 1.75% ~ 11.8%, 平均值为 5.56%, K₂O+Na₂O(0.05% ~ 5.52%, 平均值为 0.16%)和 CaO+MgO(0.08% ~ 0.91%, 平均值为 0.24%), 主要为富集 SiO₂、 Al₂O₃、TFe₂O₃、TiO₂ 和贫 K₂O、Na₂O、CaO、MgO。

图1 矿石样品的 X 射线粉晶衍射分析图谱

Fig. 1 X-ray powder diffraction spectra of the ore samples

表1 试样主次量元素信息表	ŧ
---------------	---

	Table 1	Primary a	nd secondary	elements	of the	sample
--	---------	-----------	--------------	----------	--------	--------

样品编号	SiO ₂	$\mathrm{Fe}_2\mathrm{O}_3$	Al_2O_3	TiO ₂	K ₂ O	Na ₂ O	CaO	MgO	P_2O_5
TC03GP1	32.2	28.7	30.3	7.95	0.065	0.038	0.17	0.088	0.15
TC03GP2	45.1	8.16	33.4	11.8	0.067	0.046	0.20	0.069	0.33
TC03GP3	49.9	10.4	37.1	1.75	0.059	0.035	0.11	0. 031	0.096

续表									
样品编号	SiO_2	$\mathrm{Fe}_2\mathrm{O}_3$	Al_2O_3	TiO ₂	K20	Na ₂ O	CaO	MgO	P_2O_5
BT01GP1	47.5	9.33	34.8	7.56	0.075	0.033	0.070	0.069	0.23
BT01GP2	50.8	6.59	36.2	5.42	0.091	0.036	0.029	0.058	0.20
BT01GP3	19.0	54.8	22.5	2.22	0.034	0.012	0.037	0.873	0.080
TC21GP1	53.6	3.83	36.3	5.07	0.179	0.011	0.038	0.063	0.28
TC21GP2	52.8	3.78	37.6	4.17	0.091	0.037	0.026	0.050	0.36
TC21GP3	36.0	26.3	33.4	3.42	0.130	0.019	0.023	0.138	0.091
TC1GP1	51.8	4.58	34.9	6.29	0.464	0.057	0.12	0. 151	0.45

2.2 稀土元素方法分析

采用微波消解和碱熔-沉淀分离法进行前处 理。由表2可知,微波消解法测得稀土总量(Σ RExOy)介于 541 ~ 7 004 µg/g 之间,平均值为 2 678 μg/g,碱熔法(方案一)稀土总量(ΣRExOy) 介于 590~7 987 μg/g 之间,平均值为 3 008 μg/g。 质控样 GBW07159 和 GBW07160 微波消解法测得 ΣRExOy 为 813 μg/g 和 4 871 μg/g,碱熔法(方 案一)的ΣRExOy为828 μg/g和4861 μg/g。比 较发现,碱熔法实测值均高于微波消解法,且质控 样测试结果与标准值接近。随着 Pr 和 Nd 含量增 加,方法结果差异性显著。有研究表明,钛铁矿、 锆石等样品,通常需要过氧化钠进行高温熔融消 解,而高温高压酸消解得需要几十个小时,对一些 难溶矿物消解效果不理想,特别是 Zr、Hf 和稀土 等元素的回收率较差(董学林,2020)。对于Sc元 素,碱熔法实测值偏高,微波消解法质控样品测定 结果与标准值较接近,碱熔法在 KED 模式下,背 景干扰有所改善,但效果不显著。本文引入三乙 醇胺,使基体元素与其形成稳定配合物,经过滤, 实现稀土与基体元素分离,有效降低基体干扰。 采用碱熔-沉淀分离法(方案一)较适用于矿物中 Pr、Nd、Tb、Dy的熔矿前处理,微波消解法较适用 于Sc的溶矿前处理。

2.3 稀有元素方法分析

报道称,常规酸溶法难以将锆钛矿石分解彻 底,而碱熔法能够将其分解彻底(刘闫等,2022)。 为了准确测定矿物中稀有元素,分别采用微波消 解和碱熔法(方案二)处理样品。见表3所示,对 于 Nb 元素,实际试样两种方法结果相差不大,如 样品 BT01GP3 结果分别为120 μg/g 和124 μg/g, 但质控样品结果却显示,微波消解法试验数据偏 低,而碱熔法实测值与标准值相当,如样品 GBW07185 结果分别为2439 µg/g和3365 µg/g, 数据表明碱熔法准确性相对较高。对于Zr元素, 采用微波消解法试验数据偏低,差异性显著,而碱 熔法数据与标准值较吻合,如样品BT01GP3结果 分别为789 µg/g和943 µg/g,GSS-5结果分别为 135 µg/g和284 µg/g。本文引用硫酸镁和氯化铵 溶液浸提,在铵盐缓冲体系中实现定量沉淀,防止 了铌水解,减少了测定误差。选用碱熔-沉淀分离 法(方案二)较适用于矿物中Nb和Zr的熔矿前 处理。

2.4 稀散元素方法分析

研究表明,岩矿中 Ga 的测定,采用四酸(HClO₄、HNO₃、HF、HCl)消解,静置1周后烘干, 再加热蒸发近干,用稀 HCl溶解,定容后,用 ICP-MS 测定,此法步骤亢长,不利于批量检测需求(郑 禄林等,2022)。杨惠玲等(2022)采用偏硼酸锂 熔融样品,酒石酸进行超声浸取,取得较好的前处 理试验结果。刘环等(2019)采用氢氧化钾于银坩 埚进行高温熔融样品,采用热水浸提,后用 50%盐 酸进行酸化处理,稀释5倍后,用 ICP-MS 进行测 试,结果令人满意。另外,现行 XRF 法有 DZ/ T0279.1-2016和 YS/T 575.23-2021测定方法, 但此类方法对实际样品基体匹配度要求较高,对 痕量元素的实际检测能力较差。

根据实际试样情况,采用以上几种较代表性 方法进行对比,结果见表 4,实际试样 Ga 含量在 63.5~109 μg/g 之间,平均值达 91.2 μg/g。从 质控 GBW07177 和 GBW07178 的数据可知,XRF 法和碱熔-熔融物酸化法结果与标准值较为接近。 但对于实际试样,差异性显著,对于低含量试样, 敞开酸溶和微波消解法结果与标准值误差较大, XRF 法和碱熔-熔融物酸化法准确度较高。选用 碱熔-熔融物酸化法较适用于矿物中 Ga 的熔矿前 处理。

				表 2	不同溶矿方	法稀土元素含	(b/bri)喜.					
			Table 2	Rare earth ele	ments content	in different or	e dissolution	methods(μg/	g)			
告号 古 耕			微波	消解法				ž	碱熔-沉淀分 ¹	╕法(方案−		
	\mathbf{Pr}	$\mathbf{N}\mathbf{Q}$	Tb	Dy	\mathbf{Sc}	$\sum \mathrm{RExOy}$	Pr	$\mathbf{N}\mathbf{d}$	Tb	Dy	$\mathbf{S}_{\mathbf{C}}$	$\sum \operatorname{RExOy}$
TC03GP1	24.2	97.7	1.45	7.07	45.2	541	26.4	105	1.52	7.72	53.9	590
TC03GP2	131	603	13. 3	75.6	59.5	3 237	145	653	12. 2	72.4	73.1	3 528
TC03GP3	29.6	77.9	2.70	17.7	35.7	$1 \ 053$	32.0	82.1	2.85	18.6	41.6	1 114
BT01GP1	100	428	6.22	32.0	49.8	2 182	111	473	6.79	35.6	61.5	2 419
BT01GP2	112	363	4.60	26.6	40.6	2 749	125	400	5.08	29.5	49.2	2 969
BT01GP3	30.8	100	2.40	13.5	23.5	836	30.4	111	2.53	14.4	29. 2	934
TC21GP1	98.9	466	14.5	89.7	43.5	3 073	115	533	20.3	144	54.7	4 022
TC21GP2	229	640	7.03	37.9	46.0	5 160	250	688	6.87	37.1	51.9	5 473
TC21GP3	31.3	96.9	2.53	13.5	36. 2	946	30.8	108	2.69	14.3	44.1	1 048
TC1GP1	250	958	23.9	132	48.4	7 004	289	1 090	23. 6	152	57.8	7 987
GSS-5 实测值/标准值	5. 15/7.00	21. 9/24. 0	0. 67/0. 70	3. 73/3. 70	16. 0/17. 0	217/239	5. 81/7. 00	20. 1/24. 0	0. 65/0. 70	3. 23/3. 70	15. 8/17. 0	233/239
GSS-30 实测值/标准值	10.4/12.0	42. 4/45. 0	1.08/1.20	5.31/6.60	10. 1 /10. 4	305/339	10.3/12.0	37. 1/45. 0	0. 98/1. 20	5. 80/6. 60	15. 2/10. 4	320/339
GBW07159 实测值/标准值	5. 13/5. 40	20. 1/23. 7	7.29/7.00	52. 4/49. 1	6. 21/6. 19	813/855	4. 90/5. 40	22. 4/23. 7	6. 43/7. 00	46.5/49.1	6. 86/6. 19	828/855
GBW07160 实测值/标准值	32. 9/38. 4	173/189	51. 1/49. 1	314/314	5. 53 /5. 80	4 871/4 856	35.5/38.4	178/189	51. 0/49. 1	310/314	6. 09/5. 80	4 861/4 856
注:稀土总量(Σ R	ExOy) 为除 Sc [以外的15种稀。	土氧化物量累计	4								

_
D
2
ĭ
ЩЩ
令日
₩¥
Ξ.
IF.
+
悉
관
112
Ϋ́
1
矬
17

Table 3 Rare eler	nents content in differen	nt ore dissolution me	ethods(μg∕g)	
投口的口	微波注	肖解法	碱熔-沉淀分	离法(方案二)
件前编写]Nb	Zr	Nb	Zr
TC03GP1	68.0	513	66.4	621
TC03GP2	143	1 102	140	1 238
TC03GP3	220	1 575	237	1 729
BT01GP1	83.5	605	84.9	702
BT01GP2	164	1 161	187	1 518
BT01GP3	120	789	124	943
TC21GP1	268	1 921	265	2 208
TC21GP2	317	2 368	327	2 482
TC21GP3	218	1 584	215	1 807
TC1GP1	167	1 213	170	1 368
GSS-5 实测值/标准值	15.8/23.0	135/272	18. 2/23. 0	284/272
GBW07185 实测值/标准值	2 439/3 635	-	3 365/3 635	-
GBW07157 实测值/标准值	_	1 096/9 254	_	10 565/9 254

表 3 不同溶矿方法稀有金属元素含量(µg/g)

表 4 不同溶矿方法稀散金属元素 Ga 含量(μg/g)

Table 4 Scattered elements content of Ga in different ore dissolution methods (µg/g)

样品编号	标准值	敞开酸溶法	微波消解法	粉末压片-XRF 法	碱熔-熔融物酸化法
TC03GP1	/	49.5	58.9	48.9	63.5
TC03GP2	/	142	143	112	94. 6
TC03GP3	/	109	102	93.4	97.7
BT01GP1	/	121	113	114	109
GSS-5	32.0	30. 5	35.5	30. 5	33. 5
GBW07178	65.0	17.4	53.6	65.6	69.7
GBW07180	26.9	32.7	21.5	26.3	25.3

2.5 方法检出限、精密度和准确度

本文选用碱熔法(方案一)测定 Pr、Nd、Tb、 Dy,碱熔法(方案二)测定 Nb 和 Zr,微波消解法测 定 Sc,碱熔-熔融物酸化法测定 Ga。按 HJ168-2020 规定计算方法检出限、测定下限、相对标准 偏差(RSD)和相对误差(RE)。相关系数 R²在 0.999 0 以上,方法检出限及测定下限见表 5,RSD 值和 RE 值见表 6-8。由表 5 可知,在 0.10µg/L ~1 000 µg/L 范围内,方法检出限介于 0.011 ~ 1.66 µg/g之间,测定下限介于 0.044 ~ 6.65 µg/ g 之 间。分别选用 GBW07127、GBW07155、 GBW07156、GBW07160、GBW07161、GBW07178、 GBW07180 进行试验。结果表明,RSD 值介于 2.06%~11.1%之间,RE 值介于 0.99%~9.90% 之间,方法检出限、准确度和精密度良好,满足实 际检测需求。

3 结论

(1)对于稀土元素,碱熔-沉淀分离法(方案 一)较适用于熔矿前处理,引入三乙醇胺浸取,能 有效降低基体干扰,元素 Pr、Nd、Tb、Dy 的数据准 确性较高。对于 Sc 元素,在 KED 模式下,背景干 扰有所改善,但效果不显著。因而选用碱熔-沉淀 分离法作为稀土元素的前处理,微波消解法作为 Sc 的溶矿前处理。

(2)对于稀有元素,微波消解法易使 Nb、Zr 偏低,碱熔-沉淀分离法(方案二)能促进元素充分 沉淀,也防止 Nb 的水解。因而选用碱熔-沉淀分 离法(方案二)较适用于 Nb 和 Zr 的熔矿前处理。

(3)对于稀散元素,碱熔-熔融物酸化法所测 结果与标准值较为接近,对于实际试样,XRF 法对 矿物基体纯度要求较高,存在背景干扰。因此,选

					Table 5	Detection limi	its of the n	ոբիով					
1 1			平行沙	则定次数(n)				元 11-14-14-14-14-14-14-14-14-14-14-14-14-1		() () () () () () () () () () () () () (
兀系	1	2		4	S	9	L	₩約個(μg⁄	g) 你们	眭 /hd ≤ SD(μg/g)) 極出限(µg/g)	巡泊し	₹(μg/g)
Pr	0.118	0. 132 0.	117	0.130	0.119 0	0. 131 0	. 113	0.123		0.008	0.025	0.	999
Nd	0.873	0.968 0.	883	0.971	0.872 0	0.948 0.	. 883	0.914		0.046	0.145	0.	578
$^{\mathrm{Tb}}$	0.072	0.072 0.	071	0.072	0.072 0	0. 071 0.	. 036	0.067		0.013	0.042	0.	170
Dy	0.473	0.470 0.4	474	0.469	0.465 0	0.468 0.	. 465	0.469		0.004	0.011	0.	344
$\mathbf{S}_{\mathbf{C}}$	0.008	0.019 0.	006	0.003	0.005 0	0 007 0	. 030	0.011		0.010	0.031	0.	123
Nb	0.409	0.384 0.	367	0.314	0.355 0	0.311 0.	. 334	0.353		0.036	0.114	0.	457
Zr	6.79	5.55 5.	69	5.32	5.61	5.16 5	5. 55	5.67		0.529	1.66	9.	65
Ga	1.97	1.32 1.	95	1.42	1.88	1. 30 1	l. 44	1.61		0.306	0.963	3.	85
					表 6 稀土 5	元素方法 精密	度和准确/	度 (n=7)					
				Table 6 P	recision and acc	uracy tests of	the methoo	l for rare ear	th eleme	nts			
취 1]		GBW07723	6			GBV	W07160				GBW07161		
儿条		标准值(mg/g)	RSD%	RE%	- 平均值(mg/	g) 标准值(μg/g)]	RSD%	RE%	平均值(mg/g)	标准值(µg/g)	RSD%	RE%
Pr	12.9	13.7	5.30	6.09	36.1	38. 4	4	7.55	5.96	470	460.5	4. 22	1.95
Nd	51.8	56.6	5.10	8.40	180	189	•	7.98	4.47	1579	1595	3.95	0.99
Tb	1.47	1. 63	4.89	9. 73	51.9	49.	1	5.21	5.75	35.1	34.6	4.00	1.38
$\mathbf{D}\mathbf{y}$	8.15	8.90	5.08	8.47	320	314	-	10.0	2. 15	185	183	4.18	1.18
\mathbf{Sc}	28. 3	26.6	11.1	6. 24	6.37	5.8(0	2.06	9.90	8.14	7.69	4.88	5.84
					表7 稀有元	元素方法精密	度和准确/	度(n=7)					
				Table 7	Precision and	accuracy tests	of the met	hod for rare	elements				
1		GBW07723	1			GBV	W07155				GBW07156		
九条	—————————————————————————————————————	标准值(mg/g)	RSD%	RE%		g) 标准值(l (2/2m	RSD%	RE%	平均值(mg/g)	标准值(mg/g)	RSD%	RE%
dN	46.5	45.1	5.44	3.02	272	301		2.42	9.69	14.3	/		\ \
Zr	395	365	7.97	8.27	28.9	/		/	~	1465	1384	6.14	5.87
					表8 稀散列	元素方法精密	度和准确/	度(n=7)					
				Table 8 F	recision and acc	curacy tests of	the metho	d for scattere	ed elemer	ıts			
和 1月		GBW07723				GBV	W07178				GBW07180		
16.3%	平均值(µg/g)	标准值(µg/g)	RSD%	RE%	平均值(µg/	g) 标准值(µg∕g)]	RSD%	RE%	平均值(µg/g)	标准值(µg/g)	RSD%	RE%
Ga	26.8	25.0	10.1	7.27	68.1	65.(0	4.04	4. 76	26.0	26.9	10.4	3. 37

出	
检	
方词	
S	
表	

第1期 周万峰,等:ICP-MS测定川滇黔相邻区高岭石黏土岩矿物中伴生关键三稀元素的前处理方法研究 · 107 ·

· 108 ·

用碱熔-熔融物酸化法较适用于 Ga 的熔矿前处理。

[参考文献]

- 程祎,李志伟,于亚辉,等.2020. 高压密闭消解-电感耦合等离子 体质谱法测定地质样品中铌、钽、锆、铪和 16 种稀土元素 [J].理化检验-化学分册,56(7):782-787.
- 杜芳艳.2007.3-噻唑偶氮-5-氨基苯酚分光光度法测定铝矿石 中稀土总量[J].治金分析,(1):64-66.
- 董学林.2020. 典型地质样品的前处理方法及其应用[D]. 华中 科技大学:1-106.
- 胡兰基, 霍成玉, 马龙, 等. 2022. 酸溶消解-质谱法测定地球化学样 品及稀有、稀土矿中铌和钽[J]. 化学工程师, 36(11):23-27.
- 刘环,康佳红,王玉学.2019. 碱熔-电感耦合等离子体质谱法测定 地质样品中铍铯镓铊铌钽锆铪铀钍[J]. 冶金分析,39(3):26 -32.
- 刘淑君,赵朝辉,龚大兴.2023.ICP-MS测定新类型沉积稀土矿中 关键稀土元素方法研究[J].矿产综合利用,(4):188-193.
- 刘闫,姚明星,张丽萍,等.2022. 电感耦合等离子体质谱法测定错 钛矿中16种稀土元素分量及其总量[J]. 冶金分析,42(3): 19-25.
- 门倩妮,沈平,甘黎明,等.2020. 敞开酸溶和偏硼酸锂碱熔 ICP-MS 法测定多金属矿中的稀土元素及铌钽锆铪[J]. 岩矿测

试,39(1):59-67.

- 马岩,陈宣华.2023. 我国"三稀"关键矿产的成矿理论与勘查研 究进展[J]. 地质学报,97(10):3475-3492.
- 毛善成.2003.四元络合体系-原子吸收光谱法测定稀土矿中的 钇[J].稀土,(6):35-36.
- 施意华,李学彪,付伟,等.2022. 连续提取-电感耦合等离子体质 谱法测定离子型稀土矿中稀土元素总量及7种化学形态含 量[J]. 理化检验-化学分册,58(12):1380-1388.
- 孙梦荷,苏春风,方迪,等.2023. 电感耦合等离子体质谱(ICP-MS)法在稀土分析中的应用进展[J]. 中国无机分析化学,13 (9):939-949.
- 吴刚.2019. 酸溶法、碱熔法 ICP-AES/MS 分析测定矿石中的稀 有元素[D].河北大学:1-26.
- 杨惠玲,杜天军,王书勤,等.2022. 电感耦合等离子体质谱法测定 金属矿中稀土和稀散元素[J]. 冶金分析 42(5):8-14.
- 张祎玮,蒋俊平,李浩,等.2021. 微波消解-电感耦合等离子体质 谱法测定土壤中稀土元素条件优化[J]. 岩石^{*}矿物学杂志, 40(3):605-613.
- 张生辉,王振涛,李永胜,等.2022. 中国关键矿产清单、应用与全 球格局[J]. 矿产保护与利用,42(5):138-168.
- 张海,郭佩佩,杨国彬.2022.贵州西部峨眉山玄武岩风化壳中稀 土元素赋存状态研究[J].中国稀土学报,40(5):901-908.
- 郑禄林,魏怀瑞,高军波,等.2022. 黔西北峨眉山玄武岩风化壳三 稀矿产资源富集成矿规律[J].黄金,43(9):12-19.

Research on Pretreatment Methods for ICP-MS Determination of the Associated Critical Three Rare Elements in Kaolinite Clay Rock Minerals in the Adjacent Areas of Sichuan, Yunnan, and Guizhou

ZHOU Wan-feng, WANG Yong-xin, ZHANG An-feng

(1. Key Laboratory of Strategic Minerals Intelligent Exploration of Guizhou Province, Guiyang 550081, Guizhou, China;

2. Guizhou Central Laboratory of Geology and Mineral Resources, Guiyang 550018, Guizhou, China;

3. Engineering Technology Innovation Center of Mineral Resources Explorations in Bedrock Zones,

Ministry of Natural Resources, Guiyang 550081, Guizhou, China)

[Abstract] There is a set of weathering crusts with relatively stable thickness between the top of Mount Emei basalt and the bottom of the Xuanwei Formation in the adjacent areas of Sichuan, Yunnan, and Guizhou, it is enriched with three rare elements and mainly composed of Kaolinite clay rock. In order to find out its ore grade and content, this study used X-ray diffraction (XRD) to analyze the mineral composition, and X-ray fluorescence (XRF) to analyze the major and trace elements. Several different pre-melting treatment methods were used for comparison, and the test solution was determined by inductively coupled plasma-mass spectrometry (ICP-MS). The test results show that: ① The mineral composition sample mainly consists of kaolinite, anatase, illite, ilmenite, brookite, etc., of which kaolinite accounts for 62. 3% to 89. 85%, anatase accounts for 0. 70% to 7. 00%.

(下转第17页)

sedimentary facies and their distribution characteristics, 12 types of sedimentary facies are classified. The paleogeographic environment of the main stages of the Nanhuan Period has been inverted from this. It is concluded that the northwestern part of the south China Yangtze area is paleocontinent and the southeast is the rift basin during the Nanhuan Period. The two glacial periods (beginning and ending) continuous and complete sedimentation existed only in the transitional shallow sea areas between paleocontinent and basin, that is, the current junction of Hunan Guizhou and Guangxi. The continuous and complete Nanhuan System section with research value can only be found in this area.

[Key Words] Adjoining area of Hunan, Guizhou and Guangxi; Nanhuan Period; Sedimentary facies; Paleogeography

(上接第 79 页)

Analysis on the Spatial-temporal Distribution Characteristics of Natural Disasters in Guizhou Province in 2022

XU Qi-song

(1. Department of Emergency Management of Guizhou Province, Guiyang 550001, Guizhou, China;
2. Disaster Reduction Center of Guizhou Province, Guiyang 550001, Guizhou, China)

[Abstract] Based on the annual Disaster data of Guizhou Province in 2022, in this paper, it used the Natural Breaks spatial data classification and grading method and the Weighted Standardized Disaster Index (WSDI). Based on the weighted standardized disaster situation index and four dimensional index, the disaster situation in Guizhou Province was classified and graded, and the distribution and change trend of natural disasters in Guizhou province were analyzed. From the perspective of spatial distribution, the distribution of natural disasters in Guizhou Province in 2022 is generally heavier in the north and lighter in the middle. From the perspective of disaster types, flood and drought have the most serious impact. From the distribution of disaster time, June and July were the most severe.

[Key Words] Natural disasters; Weighted standardized disaster index; Spatial and temporal characteristics of disaster loss; Disaster distribution trend

(上接第108页)

Its major elements are Si, Al, Fe, and Ti. (2) High-pressure closed microwave dissolution method is suitable for the dissolution of the concomitant rare earth element Sc, but for Nb and Zr, the data show a lower trend, while differences in other elements are not significant. (3) Alkali fusion-precipitation separation method is suitable for the decomposition of the insoluble metal minerals, which not only opens the mineral lattice but also effectively purifies the test solution through the use of precipitant or test complexing agents. It effectively reduces matrix interference and improves data accuracy. The method is suitable for the pre-treatment of elements Pr, Nd, Tb, Dy, Nb, and Zr. (4) Alkali fusion-acidification of fused material is suitable for the pre-fusion treatment of the spersed element Ga. By using kinetic energy discrimination (KED) mode, it effectively reduces spectral interference and improves the accuracy of Ga determination. The detection limit of the system method ranged from 0. 011 μ g/g to 1. 66 μ g/g, the lower limit of determination ranged from 0. 044 μ g/g to 6. 65 μ g/g. The relative standard deviation (RSD) ranged from 2. 06% to 11. 1%, and the relative error (RE) ranged from 0. 99% to 9. 90%. Verified by sample testing, the methods above were found to be suitable for the determination of the associated critical three rare elements in kaolinite clay rocks in the studied region.

[**Key Words**] Three rare elements; Alkaline dissolving method; High-pressure microwave digestion method; Inductively coupled plasa mass spectrometry (ICP-MS)